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The motion of a small, rigid sphere in a linear shear flow is considered. Saffman’s 
analysis is extended to other asymptotic cases in which the particle Reynolds 
number based on its slip velocity is comparable with or larger than the square root 
of the particle Reynolds number based on the velocity gradient. I n  all cases, both 
particle Reynolds numbers are assumed to be small compared to  unity. It is shown 
that, as the Reynolds number based on particle slip velocity becomes larger than the 
square root of the Reynolds number based on particle shear rate, the magnitude of 
the inertial migration velocity rapidly decreases to  very small values. The latter 
behaviour suggests that contributions that are higher order in the particle radius 
may become important in some situations of interest. 

1. Introduction 
Saffman (1965) considered the lift force on a small sphere in an unbounded, linear 

shear flow. He assumed that the Ryynolds numbers, Re, and Re,, were small 
compared to unity and that Re, Q Re:, where Re, = v , d / v  and Re, = G d 2 / v ;  the 
symbol d denotes the particle diameter, G denotes the velocity gradient, and v, 
denotes the magnitude of the particle’s slip velocity. Here the term ‘slip velocity’ 
refers to the velocity of the sphere centre relative to the undisturbed fluid velocity 
a t  that  point (resulting, for example, from some non-hydrodynamic ext.erna1 force 
such as gravity acting on the particle). Harper & Chang (1968) extended Saffman’s 
analysis to  arbitrary three-dimensional bodies in a linear shear flow. Drew (1978) 
performed a similar analysis for a small sphere in a two-dimensional strain flow. The 
lift force arises because of inertial effects, and the above assumptions imply that the 
dominant inertial effects arise in the disturbance flow created by the particle a t  large 
distances from the particle and that, in this region, the disturbance created by the 
translation of the sphere can be approximated by a Stokeslet flow. 

The main purpose of the present paper is to exten$ the Saffman analysis to 
situations in which Re, is not small compared to  Re;. Before providing some 
motivation for considering this problem, related theoretical work on inertial 
migration will be reviewed. 

Cox & Brenner (1968) considered the lift force on a particle in a wall-bounded flow. 
They assumed that Re, 4 1, where Re, is the Reynolds number based on the distance, 
I ,  of the particle’s centre from the wall, and that d 4 1 so that  the particle could be 
treated as a point force acting on the fluid, to lowest order in d l l .  The first of the 
above two assumptions implies that inertial effects are small compared to  viscous 
effects everywhere in the fluid so that perturbation methods can be used to  evaluate 
the lift force. They derived a general expression for the lift force in terms of a Green’s 
function. 



262 J .  B. McLaughlin 

Cox & Hsu (1977) uscd the theory developed by Cox & Brcnner to obtain 
analytical expressions for the migration velocity of a particle sedimenting parallel to 
a vertical wall for the cases Re, 4 Re, 4 1 ,  where Re, is a Reynolds number based on a 
local fluid velocity, Re, = Vd/v; K’ 4 Re,/Re, 4 1, where K = d / l ;  and Re,/Re, % 1.  
In the first case, they ignored fluid shear and considered a sphere sedimenting 
past a vertical wall in a motionless fluid; they found that the particle is always 
repelled from the wall in this case. The second case considered by Cox & Hsu is 
similar to that considered by Saffman in that the shear flow is strong enough that, 
provided the sphere is far enough from the wall, the particle can be driven toward 
the wall if it is moving faster than the surrounding fluid. However, the particle 
Reynolds number, Re,, is more strongly restricted than in the Saffman analysis 
because of the requirement that Re, 4 Re, < 1. Cox & Hsu showed that it is possible, 
in some situations, to achieve an equilibrium in which the shear-induced lift force is 
equal and opposite to the wall-induced lift force, which is in qualitative agreement 
with the experimental observations of Segrk & Silberberg (1962a, b )  that spheres in 
a low-Reynolds-number tube flow migrate to a preferred radial position. 

Vasseur & Cox (1976) extended the work of Cox & Hsu by considering a sphere 
moving parallel to the walls of a channel formed by two infinite, parallel walls. They 
considered the same cases as Cox & Hsu and they obtained the same qualitative 
types of behaviour. 

Vasseur & Cox (1977) were able to remove the restriction Re, -4 1 for the case of a 
particle translating through stagnant fluid next to a single planar wall or between 
two parallel walls. The only restriction on their analysis is that Re, < 1.  For the case 
of a particle translating next to a single planar wall, they found that the inertial 
migration velocity decays as the inverse square of the distance from the wall in the 
limit Re, 9 1.  On the other hand, in the limit Re, < 1,  their result reduces to that 
reported by Cox & Hsu. I n  all cases, the inertial migration velocity points away from 
the closest wall. The physical mechanism that causes the migration is that, as the 
particle translates, it displaces fluid laterally and inertia causes this process to be 
irreversible a t  large distances from the particle. If a wall is prescnt a t  large distances 
from the particle, it resists the displacement of the fluid and pushes the particle 
away. 

Drew (1988) extended Saffman’s analysis by including the effects of a distant wall. 
Drew assumed that, to zeroth order in inertial effects, the sphere moves parallel to  
a rigid, flat wall. He further assumed that d -4 1 so that the sphere can be treated as 
a point force acting on the fluid. Finally, he assumed that the sphere was sufficiently 
far from the wall that inertial effects were of the same order as viscous effects when 
the distance from the sphere was of order 1. Drew found that it is not possible to 
balance the repulsive lift force due to the wall against the shear-induced lift force for 
the parameter range in which his treatment is appropriate. 

All of the above analyses treat the particle as a point force or, in the case of 
neutrally buoyant particles, a point force doublet acting on the fluid to leading order. 
This approach is valid provided that the particle is located a t  a distance from the 
closest wall that is large compared to its diameter and that the particle Reynolds 
numbers are small compared to unity. Relatively little theoretical work has been 
done on the problem of determining the lift force on a particle that is close to a wall. 
Leighton & Acrivos (1985) determined the lift on a small sphere that touches a rigid 
planar surface in the presence of a simple shear flow ; they assumed that Re, 4 1 so 
that an asymptotic method could be used to derive the lift force. They showed that 
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the lift force points away from the wall and that it varies as the fourth power of the 
particle radius. 

The above analyses are restricted to small particle Rcynolds numbers. Auton 
(1987) has derived an expression for the lift force on a sphere in a weak shear flow 
of an inviscid fluid. Drew & Lahey (1987) have, independently, suggested expressions 
for the lift and virtual mass forces on a sphere in an inviscid fluid. 

In reviewing the literature, only the most closely related theoretical papers have 
been discussed. Papers dealing primarily with neutrally buoyant particles, such as 
the recent work of Schonberg & Hinch (1989), have not been included in the 
discussion. Leal (1980) has reviewed the literature on inertial migration of particles a t  
low Reynolds numbers up to 1979. There are earlier reviews by Brenner (l966), 
Goldsmith & Mason (1967), and Cox & Mason (1971). 

McLaughlin (1989) reported the results of direct numerical simulations of aerosol 
motion in a vertical channel flow of turbulent air. The aerosols that deposit develop 
large streamwise slip velocities in the viscous sublayer adjacent to each channel wall 
as a result of the large normal component of velocity that the aerosols possess at the 
edge of the sublayer. The value of Re, is typically of order 0.04 for the particles that 
deposit, but Re, is of order unity. Thus, the formula for the lift force derived by 
Saffman is not valid for the particles that  deposit. One of the goals of the present 
paper is to  provide estimates for the lift force in situations in which Re, is not small 
compared to Re; ; even though both Reynolds numbers must be assumed to be small 
compared to unity, it seems plausible that an asymptotic result might give a 
reasonable estimate for the inertial migration velocity when Re, is of order unity 
provided that the asymptotic result is derived for the correct value of Re,/Reb. 

2. Formulation of the problem 
It will be assumed that a rigid sphere is located a t  the origin of a Cartesian 

coordinate system and that, in the absence of the sphere, the velocity profile is u = 
Gxe,, where e, is a unit vector in the z-direction. It is further assumed that the sphere 
moves along the z-direction a t  velocity -v,e3. The objective of the analysis is to 
derive an expression for the x-component of the forcing acting on the particle. It is 
convenient to pose the problem in a frame of reference moving with the particle so 
that the fluid velocity field is time-independent. 

Even though Re, and Re, are small compared to unity, a t  sufficiently large 
distances from the sphere, it is possible to  balance inertial effects against viscous 
effects. Proudman & Pearson (1957) pointed out that this phenomenon is related to 
the failure of straightforward expansions in the Reynolds number, and they 
suggested a method of matched asymptotic expansions as a means of incorporating 
the higher-order effects of inertia in a systematic fashion. Specifically, Proudman & 
Pearson considered the uniform translation of a rigid sphere through an unbounded, 
motionless fluid, and they showed how to compute the leading-order Reynolds- 
number corrections to the Stokes drag coefficient. Briefly, they identified inner and 
outer regions where the effects of inertia are, respectively, small compared to and 
comparable in size with viscous effects. If one makes an expansion of the velocity 
field in Reynolds number in the inner region, it is not possible to satisfy the boundary 
condition at infinite distance from the sphere. Instead, one must match the large- 
distance behaviour of the terms of the expansion in the inner region to the small- 
distance behaviour of the solution of the outer problem. In the outer region, the 
convective term is well approximated by vSav/i3z, as pointed out  by Oseen (1910). To 
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leading order, Proudman & Pearson showed that the sphere can be treated as a point 
force as far as the flow in the outer region is concerned. The same result will be used 
in the analysis of the present paper. 

Saffman (1965) used a technique similar to that employed by Proudmpn & 
Pearson. The primary difference is that, as a result of the assumption Re, 4 Re:, the 
convective term in the Navier-Stokes equation is approximated by Gx av /&  + Gv, e, 
in the outer region ; in this expression, u and v, denote the disturbance to the fluid 
velocity caused by the sphere and the x-component of the disturbance velocity, 
respectively. Once again, the matching to the inner problem shows that, to leading 
order, the sphere can be treated as a point force. The primary difference between the 
present paper and Saffman’s work is that Gx will be treated as being of the same 
order as v, in the outer region. Thus, in the outer region, the fluid velocity will be 
approximated by (Gx + v,) e,, and the Navier-Stokes equation will be approximated 
by 

av 1 F 
(v, + Gx) -+ Gv, e,  = - - V p  + vV2v- - 6(r) .  

ax P P 

In (2 .1) ,  p denotes the pressure in the fluid, r the position vector a t  a point in the 
fluid, p the fluid density and v the kinematic viscosity of the fluid. Finally, F denotes 
the force exerted by the fluid on the particle; to zeroth order in inertial effects, 
F = Gn,uav, e,. 

The disturbance flow velocity field is assumed to be incompressible 

v*u = 0, (2 .2)  

and to vanish at large distances from the particle, 

v = O ,  r = c o .  (2 .3)  

Saffman assumed that tbe Reynolds numbers Re, and Re, were small compared to 
unity and that Re, < R e ; .  The latter assumption implies that, at distances, r ,  
satisfying r / d  = O( l / (Re; ) ) ,  the convective term is of the same order as the viscous 
term and that the convective term in (2 .1)  can be simplified by dropping the term 
involving us. Saffman (1965, including the corrigendum) showed that the lift force on 
the particle is, for G > 0, 

For G < 0, the sign of the right-hand side of (2 .4)  must be changed and G is replaced 
by its magnitude in the argument of the square root. The lift force is related to the 
migration velocity, v,, by 

Thus, to leading order, the inertial migration velocity predicted by Saffman is, for 

V ,  = 0.343avS(G/v)i .  

fL = 6.46,uv,a2(G/v)i. (2 .4)  

fL = 6npav,. (2 .5)  

(2 .6)  
G > 0, 

In  the present paper, it will be assumed that the parameter E defined by 

E = (Gv)t /vs ,  (2 .7)  
1 

or, equivalently, E = Reb/Re,, is not necessarily large compared to unity. (However, 
it will be seen that, if the ratio is too small, higher-order effects that are not 
considered in the analysis to be presented will become important.) As a consequence, 
i t  is not possible to make all of the simplifications that are possible in the limit 
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considered by Saffman. However, it will be shown that the inertial migration velocity 
can still be expressed in terms of a three-dimensional integral. The matching 
procedure used by Saffman to determine the inertial migration velocity is valid for 
the present problem. By eliminating the pressure from (2.1), one obtains an elliptic 
equation in which the highest derivatives are of biharmonic form, and one can then 
employ the argument in Saffman (1965, pp. 390-392) to show that the solution of 
(2.1) contains, to  order l l v  (where v is treated as a large parameter), a term which 
appears to  the inner expansion as a uniform translation a t  infinity. 

A second point of interest concerns the validity of the linearization of thc 
convective term on which (2.1) is based. One can distinguish three lengthscales in the 
outer part of the disturbance flow: L, = v / v s ;  L ,  = (v/G)i; and L,, = v,/G. At 
distances of order L, (the 'Stokes' lengthscale), the inertial term involving v, is 
comparable in size with the viscous term in the Navier-Stokes equation. The inertial 
terms involving G are comparable in size with the viscous term at  distances of order 
L,. Finally, the inertial term involving 21, is comparable in size with the inertial terms 
involving G a t  distances of order L,,. For E 6 1, it can be shown that L, < L,  < I+,, 
and this implies that, for distances of order L,, the disturbance flow should be well 
approximated by the Oseen solution for a sphere translating through a motionless 
fluid. As a conscquenee, in this region, the ratio Gxlv  is of order E2/Re,. Therefore, 
unless Re, is small compared to c2, the neglected convective terms that are quadratic 
in the disturbance flow will be Comparable in size with the gradient terms; since the 
gradient terms are responsible for the lift, this suggests that  the outer expansion may 
not be valid for computing the lift unless Re, < 2. Of course, it is not clear a priori 
that the disturbance flow a t  distances of order L, will contribute significantly to the 
lift force, but i t  will be shown later that this is, in fact, the case. 

3. Solution for an unbounded fluid 
I n  this section, the solution of (2.1) for the case of an unbounded fluid will be 

obtained. For this purpose, it is convenient to introduce the Fourier transforms of 
the velocity field and the pressure field: 

J - m  J - m  J - m  

J-00 J - m  J - m  

By substituting Fourier transforms of the form in (3.1) and (3.2) into (2.1), one can 
obtain an ordinary differential equation for u which takes the form 

au F 
ik, v, u = - ikn /p  - vk2u - Gu, e3 i- Gk,--- e,. ak, Sn3p 

The pressure satisfies Poisson's equation 

i k 2 n  3 
- = - ~ G ~ , u , - - v u v  47c2 s k 3'  

P 

(3.3) 

The solution of (3.4) is 
I7 2ik, 3ik, 
- = -Gu,+- 47C2k2 
P k2 
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When (3.5) is used with (3.3), the following equation is obtained for u1 : 

Gk a(k2u,) - (3/4n2) vav, k, k, 
k2 

(ik, v, + vk2) u1 - 3- - 
k2 ak, 

In order to obtain an algebraic expression for u,, it is useful to rewrite (3.6) as 
follows : 

where 

A suitable solution of (3.8) is 

3 vav,k 
€*, 

ae*k2u, - 
4n2 G 

iv, vk2 all. = 
ak, G Gk,' 

uk3 iv, k, v(ki + k:) k, $ =-2----- 
3Gk, G Gk, 

Provided that Gk,  > 0, the solution of (3.7) is 

(3.7) 

(3.9) 

(3.10) 

where $' is obtained by substituting u for k, in (3.9). The integral in (3.10) can be 
written in a more convenient form by introducing the dimensionless integration 
variable, c :  

5 = (U-k1)/k3' (3.1 1 )  

The expression for u, can now be written in the form 

where 

(3.12) 

(3.13) 

The expression for u1 in (3.12) is valid regardless of the sign of Gk,. The expression 
on the right-hand side of (3.13) is identical to the corresponding expression in 
Saffman's paper, except for the last term. 

If the expression for u1 in (3.12) is substituted into (3.1), the values of the 
disturbance flow velocity can be calculated at  any point in space. As r = (x2+ y2+z2)$ 
approaches zero, the disturbance flow must approach that of a Stokeslet solution, 
and, in order to determine the inertial migration velocity, it is necessary to compute 
the difference between the disturbance flow and a Stokeslet flow and take the limit 
in which r goes to zero. The Fourier transform of the Stokeslet flow can be obtained 
from (3.6) by letting k become large: 

(3/4n2) av, k, k, 
k4 

u; = 

The inertial migration velocity, urn, is given by 

(u, - US) dk, dk, dk,. 

(3.14) 

(3.15) 
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It is possible to  perform the integral over the magnitude of k analytically, and, for 
this purpose, i t  is useful to  perform an integration by parts with respect to 5 :  

When (3.16) is used with (3.15), and the dimensionless wavevector, q = ( v / G ) ; k  is 
introduced, it can be shown that 

3 G t  
urn = -av, (;) I ,  

4n2 
(3.17) 

where I is the four-dimensional integral which is defined by 

The integral over 4 = 141 can now be performed, and the result is 

3 G t  
urn = --uv,(;) 2n2 J ,  (3.19) 

where 

J = /: (m [ cis2 - 2s2( 1 -s2) cos2 $ - [s3( 1 - s2) t  cos $1 
0 0  

s2(1 -s2)icos# e-B2/4Azdcdsd$. (3.20) 

(3.21) 

ni B 
4e A3 

A2 = is2p + S( 1 - s2); cos $c + [, 
and B = &/e.  (3.22) 

In the above equations, s = cos8 and $, 8 denote the angular coordinates of a 
spherical coordinate system in Fourier space. 

In  general, the integrals in (3.20) must be evaluated numerically. First, the 
asymptotic limits in which E %- 1 and B < 1 will be explored. 

The limit B % 1 was considered by Saffman. In  this case, J reduces to 

1 -__ 

In  (3.20), 

J = ['r c[ s2 - 2s2( 1 -s2) cos2 $ - cs3( 1 -s2); cos $ d$. (3.23) 
0 0  

The integrals in (3.23) were evaluated numerically and, to  three decimal places, the 
value of J is 2.255; when this value is substituted in (3.19), one obtains Saffman's 
(1968) result (see (2.6)). In  order to calculate the leading corrections to this value for 
finite but large values of 8, one can expand J in powers of 11s: 

J = Jo + J2/E2 + J4/e4 + . . . . (3.24) 
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& 

0.025 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.4 
0.5 
0.6 

J 

- 0.000 0 1 3 3 
- 0.000 284 5 
-0.004658 
- 0.01 458 
-0.01247 

0.027 82 
0.1179 
0.407 6 
0.7350 
I .023 6 

& 

0.7 
0.8 
0.9 
1 .o 
1.5 
2.0 
5.0 

10.0 
20.0 
03 

TABLE 1 .  Values of' J for several values of E .  

J 

1.2554 
1.436 
1.576 
1.686 
1.979 
2.094 
2.227 
2.247 
2.252 
2.255 

The value of J, is 2.255 and J, is given by 

3xt 
J, = 1; JOa [ (s2 - 2s2( 1 - s2) cos2 $ - cs3( 1 - s2) t  cos $1 - (c.sz) 

16A3 

1 1 
A3 

- p - ( s 2 c )  1 1  (1  -s2)tcos$ e-B2/4A'dcd~d$. (3.25) 

The integrals in (3.25) must be integrated numerically and the result is J, = -0.6463. 
Thus, with an error of order l /e4,  J can be approximated by 

J = 2.255-0.6463/~'. (3.26) 
for B B 1 .  

It can be seen from (3.20) tha t  J and. therefore, v,/v, should go to  zero as e goes 
to  zero since the exponent becomes large and negative except for values of [sz of 
order e2 or [ of order 1/e2 and s B 2. An important consequence of this fact is that, 
as E goes to  zero, the ratio of the migration velocity to  the migration velocity 
predicted by Saffman's formula approaches zero. The leading behaviour of J in the 
limit E 4 1 is 

J = - 32x2e5 In ( l/ez). (3.27) 

The lowest-order corrections to  (3.27) are of order e5. The expression in (3.27) is made 
up of two identical contributions from the two regions csz = O(e2) ,  s % e2 and c = 
O(l/e2),  s B c2. In the first region, the leading contribution to  J comes from terms of 
the form (cs2)i% where the ratio cs2/e2 is treated as order unity. In  the second region, 
the leading contribution to  J comes from terms of the form l/@, where the product 
ce2 is treated as order unity. The coefficients of the above terms were evaluated with 
the symbolic manipulation program Maxima on Clarkson's School of Engineering 
Sun computer. If one performs the integrals over 5 and $, one finds terms 
proportional to 1/s that  are logarithmirally divergent at s = 0 ;  this apparent 
divergence is related to  the breakdown of the expansions of the integrand when s = 

O(e2), and, as a consequence, the lower limit of integration must be replaced by a 
constant of order 6'. 

For values of e tha t  are not small compared to  unity, i t  is necessary to  evaluate J 
by numerical integration. The values of J over the range 0.025 < E < 20 are plotted 
in figure 1 and displayed in table 1. For comparison, the values of J predicted by the 
asymptotic formula in (3.26) arc also shown in figure 1 ; for c. = 1. the error involved 
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FIGURE 1 .  The values of J obtained by numerical integration are computed to the values 
predicted by the asymptotic formula (3.26). 

- - - - _ - - - - _ _ _ _ -  
Asymptotic result 

0.1 
6 

FIGURE 2. The values of IJI/(es In ( 1/e2)) obtained by numerical integration are compared to the 
values predicted by the asymptotic formula (3.27). 

in using the asymptotic formula to compute J is 3.4 YO and the error involved in using 
the asymptotic formula to compute the difference between J and Saffman’s value for 
J (2.255) is 7.7%. The integration was performed in double precision (64 bit) 
arithmetic on the IBM 3090 computer a t  the Cornell National Supercomputer 
Facility. The IMSL routine DQAND was used in the computations; the routine 
approximates an n-dimensional integral by repeated applications of product Gauss 
formulae. The routine permits the user to specify the maximum relative and absolute 
accuracies that are acceptable, and it provides an estimate of the actual error 
involved in the computation. I n  order to reduce the amount of computer time, the 
[-integration was broken into several intervals of different sizes. With the exception 
of the first value, for the values of J reported in table 1,  the [-intervals were 0 to 
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to 0 . 1 , O . l  to 0.5 ,0 .5  to  1.0, 1.0 to 10, and 10 to 1000; 
for E = 0.025, the last interval extended to 6000. Since the integrand is weakly 
singular a t  5 = 0, the IMSL routine was not used in the first interval; instead, the 
following asymptotic formula was used to evaluate the contribution, A J ,  from the 
interval 0 to 5, (where 5, was 

AJ = $i(ACl):. (3.28) 

The effects of the interval sizes and the relative and absolute errors on the computed 
results were studied, and, with the exception of the value for E = 0.025, the values in 
table 1 are accurate to  within 0.1 YO ; the error for E = 0.025 is 1 YO. It required 
approximately two minutes of C.P.U. time to compute each of the values in table I .  
As a check on the numerical integration for small values of E ,  in figure 2 the ratio 
I JI/(s5 In ( l / e2) )  is compared to  the corresponding asymptotic value predicted by 
(3.27) ; it can be seen that, although the asymptotic regime has not been reached for 
E = 0.025, the computed result appears to be approaching the asymptotic limit, and, 
for E = 0.025, the computed result differs from the asymptotic prediction by a factor 
smaller than 2. 

to lop4, to lop3, 

for the calculations in table 1 ) :  

4. Discussion 
The expression for v,/us in (3.19) and the values of J in table 1 are the main results 

of the present paper. It has been shown that, in general, Saffman’s formula 
overestimates the magnitude of vm/vs. For E 2 1 ,  the error involved in using 
Saffman’s formula is at most 25% and the error decreases monotonically as E 

increases. However, when E is substantially smaller than unity, the overestimate is 
serious. The sign of the migration velocity predicted by (3.19) is consistent with the 
Saffman formula for E > 0.22 ; when both C: and v, are positive, the migration velocity 
is positive, which implies that a particle would move in such a way that the 
undisturbed fluid velocity near the particle would increase. However, for E < 0.22, 
the Saffman formula does not correctly prcdiot cvcn the sign of the migration 
velocity. 

The result for the migration velocity presented in this paper is correct only to 
lowest order in the particle radius. As pointed out by Saffman (1965), when one 
carries the inner problem to second order, one obtains a contribution to the lift force 
that is proportional to the cube of the particle radius and which is independent of the 
fluid viscosity : 

where S2 is the angular velocity of the sphere. When the fluid shear rate, G, vanishes 
and the particle angular velocity, S2, is non-zero, the expression for fr) in (4.1) 
reduces to the lift force derived by Rubinow & Keller (1961) who considered a 
rotating sphere that translates through a stagnant fluid. The sign of the 
Rubinow-Keller force is the same as Saffman’s first-order lift force. However, if G is 
not equal to zero, one expects that, for small particle Reynolds numbers, D = $G if 
there is no external torque, and, in this case, ff) has the opposite sign to the first- 
order lift force. Since the contribution to the migration velocity from the second- 
order Saffman force is quadratic in the particle diameter, it is formally of higher 
order than the lowest-order migration velocity predicted by (3.19), which is linear in 
the particle diameter. However, the present paper shows that the lowest-order 
migration velocity becomes extremely small when E becomes substantially smaller 
than unity. Specifically, for E 4 1,  it follows from (3.19), (3.27), and (4.1) that the 

fi2) = 7~pv,S2a~-++7~pu, Ga3, (4.1) 
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ratio of the second-order migration velocity to the leading-order contribution to the 
migration velocity is 

Re, (2) 7 %=- 
om 4608 e4 In ( l / E 2 )  ' 

where it has been assumed that Q = iG.  Thus, the second-order term will be larger 
than the first-order term if Re, > 658e41n (1/s2). The condition that the gradient 
terms in the convective term of (2.1) should be larger than the neglected terms in the 
Oscen region imposes a weaker (at least in the asymptotic limit as 6 goes to zero) 
constraint on the validity of (3.19). It was pointed out in $2 that the ratio Gx/v  is 
of order €'/Re, a t  distances of order v/v ,  and this suggests that terms which are 
quadratic in the disturbance flow might be comparable with the gradient terms 
unless Re, < 2 in the limit E 6 1. Furthermore, inspection of (3.18) suggests that 
distances of order v/o,  contribute significantly to  the migration velocity for E < 1 ; in 
this limit, it has been shown in $ 3  that  the dominant contributions to  J (and, 
therefore, I )  are from the regions [s2 = 0 ( e 2 ) ,  s b 2 and [ = O(l /s2) ,  s % 2. Consider 
the first region; it can be seen from (3.18) that, for [s2 = O(s2), the dominant 
contribution to I is from values of q of order l/e, and since q = ( v / G ) t k  and k is the 
wavenumber, i t  follows that the contribution from distances of order v/vs can be 
significant. As a consequence, it appears that the condition that the gradient terms 
should be large compared with the terms which are quadratic in the disturbance flow 
requires that Re, must go to zero more rapidly than e2 as E goes to zero in order for 
(3.19) to give a good approximation for the migration velocity. Therefore, a t  least in 
the asymptotic limit as E goes to zero, Re, must go to zero faster than c4 In (1/e2) in 
order for (3.19) to be a good approximation for the migration velocity. 

It is difficult to estimate the range of Re, for which (3.19) and the values of J given 
by table 1 are valid in the interval 0.1 < 8 < 1. Experimental measurements of the 
lateral migration velocity, om, over the interval 0.1 < e < 1 for a variety of Reynolds 
numbers in a vertical linear shear flow would be extremely valuable for this purpose. 
It is possible that, in some problems of practical interest, (4.1) may give a better 
estimate of observed migration velocities than the lowest-order result. 

The problem studied in the present paper involves a moving boundary since the 
particle is not constrained to move parallel to the undisturbed flow. The results must 
be understood in the same sense as Stokes flow problems involving moving 
boundaries ; it is assumed that the inertial migration velocity is sufficiently small 
that the flow is quasi-static. 

One situation in which the results of this paper may be of interest is the inertial 
deposition of aerosol particles from turbulent shear flows onto a flat, rigid surface. 
For example, consider a vertical flow in a two-dimensional channel formed by two 
parallel walls. McLaughlin (1989) has presented numerical simulation results for 
olive oil droplets in a turbulent air flow. At room temperature and pressure, the 
density ratio for olive oil and air is 763, the kinematic viscosity of air is 0.148 cm2/s, 
and the density of air is 1.205 kg/m3. Consider a flow for which the Reynolds number, 
based on the channel half-width and the (time-average) centreline velocity, is 2000 
(the corresponding pipe flow Reynolds number, based on the diameter and the bulk 
velocity, is about 6500) ; if the channel half-width is 1 cm, the friction velocity is 
18.8 cm/s, and the 'wall units' (based on the kinematic viscosity and the friction 
velocity) for length and time are 0.00789 cm and 0.000421 s, respectively; in what 
follows, a '+ '  superscript will denote the value of a variable in wall units (e.g. I +  
denotes the distance of the sphere centre from the wall when made dimensionless in 
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Re,  1 

0.1 
0.2 
0.4 
0.6 
0.8 
1 .o 

First-order 
1s ( W s )  v: 6 Saffman 

8.62 0.459 2.18 -0.017 2 
17.24 0.918 1.09 -0.0344 
34.5 1.84 0.545 - 0.068 8 
51.7 2.75 0.363 - 0.103 
69.0 3.67 0.272 -0.138 
86.2 4.52 0.218 -0.172 

Second-order 
Saffman Present 

0.001 73 -0.016 1 
0.001 73 -0.0268 
0.001 13 -0.0266 
0.001 13 -0.0125 
0.001 73 -0.003 73 
0.001 73 0.000255 

TABLE 2. Values of the inertial migration velocity according to the first- and second-order Saffman 
formulae and the present paper for olive oil aerosol droplets in a vertical channel flow of turbulent 
air. 

terms of the friction velocity and the kinematic viscosity). For a particle having a 
relaxation time equal to  2 wall units, the radius is 8.60 pm or 0.109 wall units. For 
droplets of this size, the gravitational settling velocity is extremely small and, for that 
reason, it is unimportant whether the air flow is upward or downward. In  table 2, the 
inertial migration velocities predicted by the first-order Saffman formula (2.4), the 
second-order Saffman formula (4.1), and (3.19) are given for olive oil droplets with 
particle Reynolds numbers, based on v, and the particle diameter, between 0.1 and 
1.0; the values of the migration velocity are given in wall units (i.e. one must 
multiply them by the friction velocity in order to obtain the value in SI units). The 
sign convention is that  positive migration velocities point toward the centre of the 
channel. In  the simulations, the slip velocity, v,, is caused by the turbulent 
fluctuations in the core of the channel and the inertia of the droplets ; the droplets 
are thrown into the viscous sublayer by the turbulent eddies and, as a result of the 
large normal gradient of the streamwise component of the undisturbed fluid velocity 
and the droplets’ inertia, they acquire a large streamwise slip velocity. In  computing 
the migration velocity due to the second-order Saffman force, i t  was assumed that 
the angular velocity of the sphere was $G. It can be seen that, for Re, = 0.4, the 
inertial migration velocity predicted by (3.19) is only 39 % of the value predicted by 
the first-order Saffman formula, and, as Re, increases beyond this value, the 
migration velocity decreases to very small values, eventually becoming smaller than 
the value predicted by the second-order Saffman formula. The values of the 
migration velocity in table 2 must be interpreted with caution as Re, approaches 
unity since none of the three formulae can claim validity in this limit. It can be seen 
from table 1 that there is considerable uncertainty about the magnitude and even the 
sign of the migration velocity for Re, of order unity and E < 0.5. 

In  the above discussion, wall effects have been ignored. One can use the 
Vasseur-Cox (1977) theory to obtain an estimate of the inertial migration vel,ocity 
when the fluid can be treated as stagnant to  a first approximation (i.e. Re, + Re; and 
the particle is close enough to the wall that wall effects are significant). In table 3, 
the inertial migration velocity is given for olive oil droplets with the same range of 
particle Reynolds numbers considered in table 2. The distance from the wall, I ,  is 
chosen so that Re, = 1.  Cherukat 8z McLaughlin (1990) have shown that the 
Vasseur-Cox result is a good estimate for v, even when Re, is of order unity, and even 
when the sphere’s centre is only a few diameters from the wall; in this case, v k  can 
be of order 0.1. The results of McLaughlin (1989) indicate that inertial migration 
velocities of this size could have a significant effect on the deposition of aerosols. It 
should also be noted that the migration velocities predicted by the Vasseur-Cox 
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Re, v, (cm/s) 1,: 1 (cm) I' l+/%n+ c, 
0.1 8.62 0.459 0.0172 2.18 10.0 0.001 79 
0.2 17.24 0.918 0.008 60 1.09 5.0 0.007 1.5 
0.4 34.5 1.84 0 .004 30 0.545 2.5 0.0286 
0.6 51.7 2.75 0.002 87 0.363 1.67 0.0644 
0.8 69.0 3.67 0.002 1.5 0.272 1.25 0 . 1  15 
1 .o 86.2 4.59 0.001 72 0.218 1 .oo 0.179 

TABLE 3. Values of the  wall-induced inertial migration velocity in wall units predicted by the 
Vasseur-Cox theory for olive oil aerosol droplets in a vertical channel flow of turbulent air. 

formula are positive (i.e. away from the closest wall) while the Saffman formula 
predicts negative values for the migration velocity. For the smallest values of e, the 
first-order Saffman formula predicts that the shear-induced lift is comparable in size 
wit,h and opposite in direction to  the wall-induced lift predicted by the Vasseur-Cox 
formula, while (3.19) predicts that shear-induced lift is negligible in comparison with 
the wall-induced lift. Cherukat ( 1990) has conducted measurements of lateral 
migration velocities for plastic balls sedimenting in a vertical laminar channel flow 
for 0.055 < e < 0.374 and 0.31 <Re ,  < 2.38. The balls were released a t  roughly 3.5 
ball diameters from the closest channel wall ; a t  this distance, the first-order Saffman 
formula predicts migration velocities that are roughly equal and opposite to  the 
migration velocity predicted by the Vasseur-Cox formula, while (3.19) predicts that 
the shear-induced lift should be negligible compared with the wall-induced lift. 
Cherukat found that the migration velocity was always toward the centre of the 
channel and that it was in reasonable agreement with the Vasseur-Cox formula. 

5. Conclusion 
The result for the inertial migration velocity in (3.19) is valid for arbitrary 

values of the parameter e defined by (2.7) provided that Re, is sufficiently small 
compared to unity; in the asymptotic limit as e goes to zero, this restriction is that 
Re, 6 6 5 8 ~ ~  In (l/.?). Unfortunately, there are no experimental measurements that 
can hc used to determine the range of Re, for which the asymptotic formula in (3.19) 
is valid over the range 0.1 < E < 1 ; this interval i s  particularly interesting because of 
the rapid variations of the ratio v,/v, and the fact that the ratio changes sign within 
the interval. 

For E: 2 1 ,  the asymptotic approximation in (3.26) gives values for the integral ,I 
that appears in (3.19) which are accurate to within 3.4%. For E < 1, J can bc 
approximated by the asymptotic expression in (3.27). However, as noted above, thc 
range ofRe, for which (3.19) is valid is more limited for small values of E than for large 
values. 
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